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A modification of Adomian's method [1-4], based on the use of Padd approximants [5], is proposed. Examples are considered: 
a non-linear differential eqvation, a rectangular plate under transverse pressure, and a combination of transverse pressure and 
longitudinal compression. ¢~ 1998 Elsevier Science Ltd. All rights reserved. 

The version of the method proposed here turns out to be more effective from the standpoint of practical 
convergence, and moreover it implies certain theoretical conclusions about the convergence domain of the solution 
and the rate of convergence. Decomposition, unlike perturbation methods [6--8], does not presume the presence 
of a small parameter [1-4, 9]--a  circumstance that eliminates various limitations such as "weak" non-linearity or 
"small" deviations of the" domain from canonical form. At the same time, in some cases the solutions obtained by 
the method require generalized summation; in problems of non-linear mechanics this has been tackled successfully 
using the Pad6 method of rational-fractional transformation [10-13]. 

1. We will begin with a simple example. Consider the following ordinary non-linear differential equation with 
initial condition 

The exact solution of this problem is 

y,+y3 =0, y(O)=}~ (1.1) 

y = (2x +4) - ~  (1.2) 

The solution of problem (1.1) produced by the decomposition method [1] is 

y=l-lx + 3 x 2 - . . .  (1.3) 

while that given by the perturbation method [6] is 

1 l 3 2 5 x3 + 
. . .  (1.4) 

A comparison of the terms of the expansion of the approximations by the methods of decomposition (1.3) and 
perturbations (1.4) shows that they are identical with those of the Maclaurin expansion of the exact solution (1.2) 
up to the term of the same degree as the order of the approximation. Obviously, the radii of convergence will also 
be identical with that of the expansion of the exact solution (which is 2). In this case, then, it would be legitimate 
to apply meromorphic continuation of the solution according to the Padd scheme [5]. To enlarge the convergence 
domain, we will use Padd approximants (PAs) of order [0/1] and [1/11. These are the same for the exact solution 
and both approximations 

8 + x  
F [ 0 / I ] =  , F [ I / I ] =  16+6---'~ 

Application of these PAs enables one to enlarge the domain within which the results are applicable in practice 
by a factor of more than 2 with a relative error of 10%. 

Analysis of the exact solution and the approximations produced in this example by perturbation and decomposition 
methods, as well as their PAs, leads one to the following conclusions, which will be rigorously proved in the course 
of this paper. 

1. In both the decomposition method and the perturbation method, the components at powers of the variable, sum- 
med over all approximations, are identical with the expansion of the exact solution of the equation in a Maclaurin series. 
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2. The convergence domain of the approximations obtained by these methods is a disk about zero with radius 
equal to the distance to the nearest singular point of the exact solution. 

3. For meromorphic continuation of the solution to the nearest essentially singular point of the true solution, 
it is legitimate to use PAs; this approach considerably improves the convergence. 

2. We will now consider the problem in a more general formulation. Consider the following non-linear problem 
U n for a system of ordinary differential equations in unknown functions { i}~=~ in a domain I'~ 

q u , + ~ ; ( ~ ,  ..... , . . ) + u , ( . ~  ..... . . ) = e l ,  i = l  ..... . (2.0 

t . ,= - -~ ,  g,=-= ~oV 

with boundary conditions on the bounda ry /~  

G j (u l  ..... u n) = lay, j = i ..... k, k = k ! +. . .  + k n,la ) = c o n s t  (2.2) 

where L i is the operator of the highest-order derivative of the ith equation with respect to the independent variable 
~, R/is a linear differential operator containing derivatives of lower order, Ni and Gj are non-linear differential 
operators containing derivatives of lower order and gi = gi(~) is a continuous function of ~. We shall also assume 
that R~, Ni and Gj vanish when the unknown functions and their derivatives vanish and that ~ = 0 is an interior 
point of f~. Suppose that we have found a solution {fi/}~'=~ of problem (2.1), (2.2) whose components are analytic 
in some neighbourhood of ~ = 0 and may therefore be expanded in Taylor series 

ui = ~. "uij~ j ,  i =  1 ..... n (2.3) 
k=O 

Considering the uis and their derivatives as independent arguments, we express Ri, Ni and Gj as generalized multi- 
dimensional Taylor series 

Ri(ul ..... u . ) +  Ni(u I ..... u . )  = 

"--ktSl blu.J 1 . kj- l  k .-I  btu i)"u J p = x Z No,--~Zr=~+~ E E .~o~Op~-~ - ~--~+.. 
j=ff=o oq .j,p=l I=O 

(2.4) 
n u . ) = E  kq-, b tu-  I . kq-, kp- ,  ~tuq b=up a j(., Z Gjq, ~-.~ -[-.~ E Z E Njqplm ~1 ' ~ m  +""  f=-! I = 0  O~ L.q.p=l l = 0  m=0 

Substituting expansions (2.3) and (2.4) into the original equation (2.1), we obtain the condition needed to determine 
~iy, as an infinite system of equations 

1 ( . kj-, , . kp-i k.-z "] 
uilq =-~[giO - ~'. ~, Notujtl[-" ~ E E ~.NoptmU'jtl[u-pmm'-... (2.5) ) Ici'[. j=li=0 ~"j.p=l m:0 1=0 

_ ( s _ k d !  ~ . .k~! _ ( l + s _ k 0 t  
uls = - sr (-gis -I- ~.j 2dNifll4j(l÷s_k~) ($ k,) w + 

• j=ll=O -- " • 

| n k j - I  kp-I  l+s-ki 
+~ T-. T_. 7_. %,,,. ~, ~=-~l+m-~+,-k;, X 

2../,p=l t=o m=O 

qt ( l + m - q + s - k i ) t  

×- '  ( l , q + s _ k i )  [ " " )  s = k i +  ( q - l ) [  + I, k i+2, . . . ;  i = l  ..... n 

Thus, each of the components u/i, beginning with s = ki, is recursively determined, via formulae (2.5), from the 
components ~0, . . . .  u/(k,-O. To determine the latter, we have k boundary conditions, which cannot be separated 
according to the components of ~k. 

Substituting expansions (2.3) and (2.4) into boundary conditions (2.2), we obtain 
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*~i ~ ~qp(~O)( t, tt) ' ! " k~-J , . -~  " -  o .~-t s! 
q=l I=:0 p=! F- -  • ~"q,p=l I=0 m=0 s=l ($- - l ) t  

r=m ( r - m ) !  ~" . . . .  I~j, j = l  ..... k (2.6) 

The form of system (2.5) and boundary conditions (2.6) is such that one can also consider an infinite number 
of unknown functions (n = ~), in which case the number of equations is also infinite (k = o¢), but their form remains 
the same. 

If conditions (2.5) and (2.6) are to be sufficient to determine the solution of the boundary-value problem, we 
must assume that {u/-}n= 1 is unique in some circular neighbourhood of ~ = 0 with non-zero radius, which is a natural 
condition in most mechanical problems. By the uniqueness of the solution and the fact that Eqs (2.5) uniquely 
define the relationship between the first ki terms in the expansion of the unknown functions and all the following 
ones in the construction, the first components of (2.6) are also uniquely defined. Thus, Eqs (2.5) and (2.6) completely 
and uniquely define the solution of boundary-value problem (2.1), (2.2). We may thus assume that if a solution of 
system (2.1) with boundary conditions (2.2) exists and is unique and analytic in the neighbourhood of ~ = 0, then 
series (2.3) will be the Maclaurin expansion of the solution, as a function of ~, if and only if its components satisfy 
Eqs (2.5) and (2.6). 

3. We will now reformulate the initial boundary-value problem as a problem of perturbation theory, introducing 
an artificial small parameter e, as clone by Dorodnitsyn [6] (an analogous scheme in computational mathematics 
is known as the method of continuation with respect to a parameter). 

Consider the solution of the boundary-value problem (2.1), (2.2) by the scheme of perturbation theory with an 
artificial small parameter el, in the following form 

Liu i  = - e l ( R i ( u ,  ..... un )+  N i (u  I ..... u n ) - g i ) ,  i= l ..... n (3.1) 

Note that when el = 1 the results of applying this perturbation method are the same as those obtained by 
Adomian's decomposition method [1]. Expressing the required solution as 

U,= ~ Uqgl j ,  i = 0 , 1  .... (3.2) 
1=0 

substituting expansion (3.2) into Eq. (3.1) and boundary conditions (2.2) and splitting the system in powers of el, 
we obtain a sequence of limiting boundary-value problems 

t~Ol: L i u i o = O , i = l  ..... n; G j (U lo  ..... un0)=l.t j ,  j = i  ..... k (3.3) 

, i :  L,.,j =-(R;(.,,~_,, ..... u.~j_,,)+ 

+ N , ( . , o  .. . . .  . . o  ..... u,c~-, )  ..... " . ( j - , ~  ) -  gi ). i = l ..... . (3.4) 

oj ( . , 0  ..... . . 0  ..... . ,~j- , )  ..... . . , j - ,~ )  =o.  j = l  ..... t 

where Ni and Gj a r e  the components of Eq. (2.1) and boundary conditions (1.2) for ~{. When expansion (2.4) is 
substituted into Eqs (2.1) and (2.2), these components may be expressed as generalized Taylor series in the unknown 
functions and their derivatives. 

The components of the solution in the zeroth approximation have the form of polynomials and so 

u,= '2 ~i ~ =,~.~°',i.j=0.1 .... (3.5) 
j=0 m=O 

The boundary-value problems (3.3) and (3.4) yield the coefficients uijm. 
Substituting them into series (3.5) and inverting the order of summation when el = 1 (this is admissible if the 

solution is convergent in some neighbourhood of ~ = 0 of non-zero radius, which is a natural condition in mechanical 
problems), we get 

= = ( 3 . 6 )  
m=0 j=O m=0 
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m=0 j=0 m=0 

= -  p. ..~,, : ~, lVirlUr(s-ki+l) + Uis $! ~r=! /=0  [$--Ki)" 

2! q,p=l I=O m=O t=m [j---I r=O 

Xttqr(s_ki+l_t+m)} t] ( s -k  i +l-t+m)! I- .1+ (s-ki)[ 
(t-m)[ (s -k i - t+m)!  "" s[ gis (3.7) 

i=1,2 , . . . ;  s = k  i, k i+l  .... 

After a transformation of the sum in braces in (3.7), analogous to the convolution mapping in the Laplace 
integral transform [14], expression (3.7) is identical with (2.5), i.e. the solution obtained by the proposed perturbation 
method satisfies the necessary condition for the components of the Taylor series of the exact solution. Thus, one- 
dimensional non-linear problems may be effectively solved both by the decomposition method in Adomian's version 
and by a perturbation method with an analogous scheme; the solution obtained will have the form of the Maclaurin 
expansion of the solution of the initial problem. 

4. The above conclusion contains important information on the domain and the nature of the convergence of 
the solution. Since the series Y-~=0 uijm in (3.7) has the meaning of a coefficient of the Maclaurin series of ui in 
powers of ~, it follows that el = 1 belongs to the disk of convergence for all g that lie inside the disk of convergence 
with respect to that variable. Therefore, if the solution is convergent as a series in powers of ~ in the neighbourhood 
of g = 0, with a non-zero radius of convergence, the properties of power series [14] imply that the sum of the series 
(3.6) is a continuous function a(gl) which when el = 1 is identical with the solution of the initial boundary-value 
problem, for which (3.6) is the Maclaurin expansion. Generalized summation using PAS accomplishes meromorphic 
continuation of the solution [5], which is a valid in a transformation both with respect to g and with respect to 81. 
By virtue of this property, the sequence of PAs of the solution found using the method proposed here with respect 
to ~ or el, converges uniformly, as the order of the numerator increases, to the true solution in a disk about zero, 
within which the solution is meromorphic in the appropriate variable, while the total order of the poles is equal 
to the order of the denominator of the approximants, with the exception of the poles themselves. 

Thus, in the limit, the method proposed here yields a solution of the boundary-value in its domain of 
meromorphicity. 

5. Let us consider a scheme for solving two-dimensional problems. Since many problems in the theory of plates 
and shells are periodic with respect to one of the variables (which we denote by rl) or may be reduced to periodic 
problems, while the expansion of the unknown and given quantities in trigonometric series makes it possible to 
comply completely with the periodicity conditions and determines the form of the functions and their derivatives 
as functions of rl, we shall treat r I as a parameter, thus essentially making the problem one-dimensional. 

After expanding the unknown quantities in series of trigonometric functions, substituting them into the initial 
equations and transforming, we obtain an infinite system of type (2.1) with boundary conditions of type (2.2) with 
respect to the components of the expansion (n = k = oo). The solution of this boundary-value problem by the method 
considered in this paper has the form of (3.6), (3.7). 

6. We will investigate the practical convergence of the method using model problems. As the first example we 
consider a linear formulation of the problem of the bending of a rectangular plate, supported on hinges, under 
uniform pressure. When the approximate solution was constructed, the form of the boundary was artificially 
perturbed by increasing the length of the plate from % to z. The solution obtained by the method proposed here 
was compared with the exact solution [15] and the error was computed as a percentage of the value of the deflection 
for the exact solution. When the numerical experiment was carried out, the ratio of the length of the sides of the 
plate and the amplitude of the perturbation of the form of the boundary were varied. An idea of the dependence 
of the computation error of the maximum deflection on the parameters, in percentages, may be obtained from 
Table 1. For comparison, we used PAs of orders [0/1] and [1/1]. Analysis of the numerical data indicates that the 
approximate solution gives satisfactory accuracy for a broad range of plates. The [0/1] PA is preferable, since it 
yields the same accuracy or better as the [1/1] PA, with less computation. 

Analogous results were obtained when analysing a non-linear model of the deformation of a rectangular plate 
under transverse pressure, taking membrane forces into account. In this example, besides the parameters introduced 
previously, the force of uniform longitudinal compression of the plate, Nx, was also varied. The results are shown 
in Table 2, where the dependence of the relative error on the plate parameters and the value of the longitudinal 
load, expressed as a percentage, is shown. Note that increasing the value of Nx from a third to two-thirds of the 
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'Co x 'C/To = 1.00 
a 

[0/I] 

I 0.0 
2 0.I 
3 0.4 
4 1.0 
5 2.1 
6 3.4 

[ l / l l  

0.0 
0.0 
0.7 
0.3 
0.9 
2.3 

1.01 

[O/ l l  [ I / I ]  

0.2 0.2 
0.7 0.6 
0.5 0.8 
0.5 0.6 
1.5 0.3 
2.8 1.6 

1.10 

[O/ll [111] 

9.5 2.5 
3.1 7.0 
6.9 9.3 
6.8 9.7 
5.0 8.5 
2.8 4.9 

Table 2 

T. 
3 

27". 
3 

a 

x/x o = 1.00 

[o/1] [ t i l l  

0.l 0.0 
0.2 0.1 
0.5 0.9 
1.6 0.2 
0.0 D0 
1.0 0.0 
1.5 0.0 
2.5 1.0 

[o/ i ]  

0.3 
0.2 
1.0 
2.0 
3.0 
1.3 
1.5 
5.0 

1.01 

l i l t ]  

0.4 
0.7 
0.7 
0.4 
1.2 
1.0 
0.9 
0.7 

1.10 

to/t]  

6.8 
0.8 
1.1 
2.1 

60.0 
25.0 
23.5 
29.0 

H i l l  

3.8 
5.1 
5.0 
3.5 
5.0 
7.0 
3.1 

60.0 

critical axial compression load T, did not  produce appreciably inferior results. However, to realize the perturbation 
of the form of the boundary in this case it was necessary to use at least three approximations and PAs of order 
I I / 11  . 

A characteristic feature of both examples is the increased accuracy of the computations for nearly square plates. 
"[his enables one to treat the method as a supplement to traditional asymptotic methods, whose application requires 
the geometrical dimensions of the construction to be considerably different. 

This research was supported in part by the International Soros Science Education Program (N SPU061002). 
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